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The Baxter Revolution1

Barry M. McCoy2

I review the revolutionary impact Rodney Baxter has had on statistical
mechanics beginning with his solution of the 8 vertex model in 1971 and the
invention of corner transfer matrices in 1976 to the creation of the RSOS
models in 1984 and his continuing current work on the chiral Potts model.
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1. INTRODUCTION

At the beginning of the 20th century statistical mechanics was conceived of
as a microscopic way to understand the laws of thermodynamics and the
kinetic theory of gases. In practice its scope was limited to the classical
ideal gas, the perfect quantum gases and finally to a diagrammatic tech-
nique devised in the 30's for computing the low density properties of gases.
At that time there was even debate as to if the theory were in principle
powerful enough to include phase transitions and dense liquids.

All of this changed in 1944 when Onsager(1) demonstrated that exact
solutions of strongly interacting problems were possible by computing the
free energy of the Ising model. But, while of the greatest importance in
principle, this discovery did not radically alter the field of statistical
mechanics in practice and relatively little progress was made in the follow-
ing 25 years. However, starting with the beginning of the 70's Rodney
Baxter took up the cause of exactly solvable models in statistical mechanics
and from that time on the field has been so totally transformed that it may
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truly be said that a revolution has occurred. In this paper I will examine
how this revolution came about.

2. THE EIGHT VERTEX MODEL

Onsager's work of 1944 was monumental but cannot be said to be
revolutionary because its consequences were so extremely limited. Kaufman
and Onsager(2, 3) reduced the computations to a free fermi problem in 1949
and after Yang(4) computed the spontaneous magnetization in 1952 there
were no further developments. Indeed the reduction of the solution of the
Ising model to a free fermi problem had the effect of suggesting that
Onsager's techniques were so specialized that there might in fact not be any
other statistical mechanical models which could be exactly solved.

It was therefore very important when in 1967 Lieb(5) introduced and
solved (cases of ) the six vertex model. This showed that other exactly solv-
able statistical mechanical problems did indeed exist. Lieb found that this
statistical model had the very curious property that the eigenvectors of its
transfer matrix were exactly the same as the eigenvectors of the quantum
spin 1�2 anisotropic Heisenberg chain
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which had been previously solved(6�9) by methods that went back to the
work of Bethe(10) in 1931. This result is particularly striking because the six
vertex model depends on one more parameter that does the XXZ spin
chain. That extra parameter (which I will refer to as v) appears in the
eigenvalues of the transfer matrix but not in the eigenvectors. The reasons
for this curious relation between the quantum spin chain in one dimension
and the problem in classical statistical mechanics in two dimensions were
totally obscure.

At that time the author was a post doctoral fellow and he and his
thesis advisor in a completely obscure paper(11) explained the relation
between the quantum and classical system by demonstrating that the transfer
matrix for the six vertex model T (v) commutes for all v with the Hamiltonian
(1) of the XXZ model.

[T (v), H]=0 (2)

This commutation relation guarantees that the eigenvectors of T (v) are
independent of v and that they are equal to the eigenvectors of H without
having to explicitly compute the eigenvectors themselves.
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The next year Sutherland(12) found an identical commutation relation
between the quantum Hamiltonian of the XYZ model

HXYZ= :
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and the transfer matrix of the eight-vertex model. But since neither the
eight vertex model nor the XYZ model had been solved this commutation
relation merely related two equally intractable problems.

All mysteries were resolved when in 1971 Baxter solved both the eight
vertex model and the XYZ model(13�15) at the same time and moreover
solved them by inventing methods of such power and generality that the
the course of research in statistical mechanics was permanently altered.
This is the beginning of the Baxter revolution.

The first revolutionary advance made by Baxter(13�15) was the
generalization of

[T (v), H]=0 to [T (v), T (v$)]=0 (4)

and that as vt0

T (v)tT (0)(1+cv+vHXYZ) (5)

This generalization is of great importance because it relates a model to
itself and can be taken as a general criteria which selects out particular
models of interest. Moreover, Baxter demonstrated the existence of this
global commutation relation by means of a local relation between
Boltzmann weights. Baxter called this local relation a star triangle equation
because the first such relation had already been found by Onsager(1, 16) in
the Ising model and Onsager had referred to the relation as a star triangle
equation. A related local equation had been known since the work of
McGuire(17) and Yang (18) on the quantum delta function gases but its deep
connection with the work of Onsager had not been understood. The search
for solutions of the star triangle equation has been of major interest ever
since and has led to the creation of the entirely new field of mathematics
called ``Quantum Groups.''(19, 20) The Baxter revolution of 1971 is directly
responsible for this new field of mathematics.

The second revolutionary step in Baxter's paper(13) is that in addition
to the commutation relation (4) he was able to obtain a functional equa-
tion for the eigenvalues of the transfer matrix and from this he could obtain
equations which characterized the eigenvalues. In the limit where the eight
vertex model becomes the six vertex model these equations reduced to the
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Bethe's equations previously found by Lieb.(5) But Lieb found his equa-
tions by finding expressions for all of the eigenvectors of the problem
whereas Baxter never considered eigenvectors at all. It is truly a revolution-
ary change in point of view to divorce the solution of the eigenvalue and
eigenvector problems and to solve the former without knowing anything of
the latter. This technique has proven to be of utmost generality and,
indeed, for almost every solution which has been found to the star triangle
equation a corresponding functional equation for eigenvalues has been
found. On the other hand, the study of the eigenvectors, which was the
heart of the solution of the six vertex and XXZ models has almost been
abandoned.

The final technique introduced by Baxter is the thorough going use of
elliptic functions. Elliptic functions, of course, have been used in physics
since the days of the heavy symmetric top and are conspicuously used in
Onsager's solution of the Ising model. But even though elliptic functions
appear in Onsager's final expression for the free energy of the Ising model
they play no role in either Onsager's original algebraic solution or in
Kaufman's free fermi solution. On the other hand there are steps in
Baxter's solution where the elliptic functions are essential. It is quite fair to
say that just as Onsager invented the loop group of sl2 in his solution of
the Ising model that Baxter in his 1971 paper first introduced the use of the
principles of modular invariance into physics.

3. THE CORNER TRANSFER MATRIX

It took Onsager 5 years from the computation of the Ising model free
energy before he made public his conjecture for the order parameter.(21)

Baxter was much more prompt in the case of the eight vertex model and
produced in 1973 a conjecture for the order parameter(22) a mere two years
after the free energy was computed. For the Ising model it took another
three years to go from the conjecture to a proof.(4) For the eight vertex
model it also took Baxter three years to obtain a proof of the conjecture.

The details of Baxter's proof are contained in two separate
papers(23, 24) and form the subject of Chapter 13 of his 1982 book Exactly
Solved Models in Statistical Mechanics.(25) It is even more revolutionary
than the 1971 free energy computation. Baxter not only abandons the use
of the eigenvectors of the row to row transfer matrix (which had been
retained in his 1973 computation of the free energy of the six vertex model
order parameter(26)) but he abandons the use of the row to row transfer
matrix altogether. In its place he uses a completely new construct which
had never been seen before and which had absolutely no precursors in the
literature: the corner transfer matrix.
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A transfer matrix builds up a large lattice one row at a time. In an
L_L lattice of a 2 state per site model it has dimension 2L. A corner transfer
matrix builds up a lattice by adding one quadrant at a time and has dimen-
sion 2L2�4. The spin whose average is being computed lies at the corner
common to all four quadrants. Order parameters are computed from the
eigenvector of the ground state of the row to row transfer matrix. For
the corner transfer matrix the order parameter is expressed in terms of the
eigenvalues and the eigenvectors are not needed.

Thus far the philosophy of the order parameter computation has
followed the spirit of the free energy computation in that all attention has
been moved from eigenvectors to eigenvalues. But in order to make this a
useful tool Baxter takes one more revolutionary step. He takes the thermo-
dynamic limit before he obtains equations for the eigenvalues. This is
exactly the opposite from what was done in the free energy computation
where the equations are obtained first and only in the end is the thermo-
dynamic limit taken.

This early introduction of the thermodynamic limit has a very
dramatic impact on the eigenvalues of the corner transfer matrix. To see
this we note that the matrix elements of the corner transfer matrix are all
doubly periodic functions of the spectral variable v. This is of course also
true for the row to row transfer matrix. It is thus a natural argument to
make to say that a matrix with doubly periodic elements should be have
doubly periodic eigenvalues and this is in fact true for the row to row
transfer matrix. But for the corner transfer matrix the taking of the thermo-
dynamic limit has the astounding effect that the eigenvalues, instead of
being elliptic functions all become simple exponentials e&:r v. Once these
very simple exponential expressions for the eigenvalues are obtained it is a
straightforward matter to obtain the final form for the spontaneous
magnetization of the eight vertex model, but all along the way, it is fair to
say, a great deal of magic has been worked.

4. THE RSOS MODELS

The next stage in the Baxter revolution is the discovery and solution
of the RSOS model by Andrews, Baxter and Forrester in 1984.(27) As in the
case of the eight vertex model revolution in 1971 there were several precursor
papers, this time all by Baxter himself.

It has been stressed in the preceding sections that Baxter made a
revolutionary shift of point of view by discovering that the eigenvalue
problems could be solved without solving the eigenvector problems. There-
fore for the six vertex and XXZ model Baxter could obtain the Bethe's
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equations for the eigenvalues without recourse to the Bethe's form of the
eigenvector

�(x1 , x2 ,..., xn)=:
P

A(P) ei � j xj kPj (6)

In the previous work on the six vertex and XXZ models the restriction was
made that all the kj were distinct. It was therefore quite a surprise when in
1973 Baxter discovered(28) that in the XXZ chain (1) when

2= 1
2 (q+q&1) and q2N=1 (7)

that there are in fact eigenvectors of the XXZ chain for which the kj of (6)
are equal. For these solutions the kj obey

2eikj&1&ei(kj+kl )=0 (8)

and this case had been tacitly excluded in all previous work.
In ref. 28 Baxter generalized the root of unity condition (7) of the six

vertex model to the eight vertex model and he found an entire basis of
eigenvectors which in a sense makes maximal use of the violation of the
previously assumed condition kj{kl . Baxter is thus able to re-express these
root of unity eight vertex models in terms of what he calls in his 1973 paper
an ``Ising-like model with a four spin interaction.''

Baxter's next encounter with root of unity models was in 1981 when
he solved the hard hexagon model.(29) In this most remarkable paper
Baxter uses his corner transfer matrices to compute the order parameter of
the problem and in the course of the computation discovers the identities
of Rogers(30) and Ramanujan(31) which were first found in 1894

:
n=0

qn(n+a)

(q)n
=

1
(q)�

:
�

n=&�

(qn(10n+1+2a)&q(5n+2&a)(2n+1)) (9)

where (q)n=>n
j=1 (1&q j ) and a=0, 1. Baxter was clearly impressed that

these classic identities appeared naturally in a statistical mechanics problem
because he put the term ``Rogers�Ramanujan'' in the title of the paper.
Because the right hand side of (9) is obviously written as the difference of
two theta functions we once again see that modular functions appear
naturally in statistical mechanics. But neither the 1973 nor the 1981 papers
can be called genuinely revolutionary because neither of them was seen to
have general applicability.

The revolution that allowed the general applicability of Baxter's tech-
niques is carried out in the paper of 1984 with Andrews and Forrester(27)
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and the companion paper by Forrester and Baxter(32) in which it was
shown that the hard hexagon model of ref. 29 is obtained from a special
case of the ``Ising-like models'' found in the root of unity eight vertex
models in 1973.(28) These Ising-like models are now called solid-on-solid
models and the restriction needed to obtain the hard hexagon model is in
the general case called the restricted solid-on-solid model. Starting from
this formulation of the RSOS models the order parameters are computed
by a direct application of the corner transfer matrix method and at the step
where in the hard hexagon model the identity (9) was obtained the authors
of refs. 27, 32 instead solve a path counting problem and find the general
result

1
(q)�

:
�

n=&�

(qn(npp$+rp$&sp)&q(np$+s)( jp+r)) (10)

where the relatively prime integers p and p$ effectively parameterize the
root of unity condition (7). This sum in this result is obviously the dif-
ference of two Jacobi theta functions and thus we see that all the RSOS
models lead to theta functions. But most remarkably the exact same
expression (10) was discovered at the same time to arise in the expression
of the characters(33, 34) of the minimal models M( p, p$) conformal field
theory(35) and these models were soon thereafter obtained as cosets (36) of
the affine Lie algebra A (1)

1 .
It thus became clear that the statistical mechanics of RSOS models,

conformal field theory, and affine Lie algebras are all part of the same sub-
ject and from this point forth the results of statistical mechanics appear in
such apparently unrelated fields as string theory,number theory and knot
theory. Baxter's corner transfer matrix was seen to be intimately related to
constructions in the theory of affine Lie algebras involving null vectors and
the corner transfer matrix computations of Baxter's statistical models were
rapidly generalized from the affine Lie algebra A (1)

1 to all affine Lie
algebras. Solvable statistical mechanical models were now seen everywhere
in physics and Baxter's methods were subject to vast generalization.

5. THE CHIRAL POTTS MODEL

For a few years it was thought that the revolution was complete and
that corner transfer matrix methods and group theory could solve all
problems which started out from commuting transfer matrices. This was
changed however when the chiral Potts model was discovered in 1987.(37)

This model does indeed satisfy the condition of commuting transfer
matrices (4) and the Boltzmann weights do obey a star triangle equation
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but unlike all previously seen models the Boltzmann weights are not
parameterized either by trigonometric or elliptic functions but rather are
functions on some higher genus spectral curve. There is a modulus like
variable k in the model and when N=3 the genus of the curve is 10 if
k{0, 1 and if k=1 the curve is the very symmetric elliptic curve x3+ y3=z3.
If N=4 and k=1 the curve is the fourth order Fermat curve x4+ y4=z4

which has genus three.(38)

As would be expected Baxter rapidly became interested in this
problem and soon Baxter, Perk and Au�Yang(39) found that for arbitrary
N and k the spectral curve has the very simple form

aN+kbN=k$d N and kaN+bN=k$cN (11)

with k2+k$2=1. When N=2 this curve reduces to an elliptic curve and
the chiral Potts model reduces to the Ising model. However, in general for
k{0, 1 the curve has genus N 3&2N 2+1 and for k=1 the curve reduces
to the N th order Fermat curve of genus (N&1)(N&2)�2.

The first thing to attempt after finding the Boltzmann weights for the
chiral Potts model is to repeat what had been done so many times before
and to obtain a functional equation for the eigenvalues. That was soon
done(40�43) but the next step in Baxter's program was not so easy because
the methods of solution of this functional equation which relied on the
properties of genus 1 elliptic functions did not work. Solutions for the free
energy which by passed the elliptic functions were soon found(40�44) but the
fact that new methods were needed indicated that the revolution was not
yet complete.

The greatest puzzle was set up in 1989 when after generalizing earlier
work on the N=3 state model(45) it was conjectured (46) on the basis of
extensive series expansions that the order parameters of the N state chiral
Potts model are given by

Mn=(1&k2)n(N&n)�2N2
for 1�n�N&1 (12)

This remarkably simple expression reduces to the result of Onsager(21) and
Yang(4) for the Ising model when N=2 and is a great deal simpler than the
order parameters for the RSOS models.(27, 32) The first expectation was that
Baxter's corner transfer matrix methods could be applied to prove the con-
jecture true and the first attempt to do this was made by Baxter in ref. 47.
In this paper Baxter gives a new and very transparent derivation of the
corner transfer matrix methods and he reduces the computation of the order
parameter to a problem of the evaluation of a path ordered exponential of
non-commuting operators over a Riemann surface. Such a formulation
sounds as if methods of non Abelian field theory could now be applied to
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solve the problem. Unfortunately to quote Baxter in a subsequent paper(48)

``Surprisingly the method completely fails for the chiral Potts model.''
The reason for the failure of the method is that the introduction of the

higher genus curve into the problem has destroyed a property used by
Baxter and all subsequent authors in the application of corner transfer
matrix methods. This property is the so called difference property which is
the property, shared by the plane and torus but by no curve of higher
genus, of having an infinite automorphism group (the translations). It is
this property which was used to reduce the eigenvalues to exponentials in
the spectral variable and it is not present in the chiral Potts model.

6. FUTURE PROSPECTS

The discovery of the chiral Potts model has made it now clear that the
Baxter revolution has met up with problems in algebraic geometry which
have proven intractable for almost 150 years. Baxter has investigated these
problems now for almost a decade(47�51) and it is clear that the solution of
these physics problems will make a major advance in mathematics. But
even with this evaluation of current problems the impact of Baxter's
revolution is clearly seen. Mathematics is no longer treated as a closed
finished subject by physicists. More than anyone else Baxter has taught us
that physics guides mathematics and not the other way around. This is of
course the way things were in the 17th century when Newton and Leibnitz
invented calculus to study mechanics. Perhaps in the intervening centuries
in the name of being experimental scientists we physicists drifted away from
away from doing creative mathematics. The work of Rodney Baxter serves
now and will serve in the future as a beacon of inspiration to all those who
believe that there is a unity in physics and mathematics which provides
insight that can be obtained in no other way.
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